In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V.
نویسندگان
چکیده
The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti-6Al-4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti-6Al-4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo.
منابع مشابه
Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy
PURPOSE The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy...
متن کاملMesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity
Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone in...
متن کاملElectrochemical and mechanical behavior of laser processed Ti-6Al-4V surface in Ringer's physiological solution.
Laser surface modification of Ti-6Al-4V with an existing calcium phosphate coating has been conducted to enhance the surface properties. The electrochemical and mechanical behaviors of calcium phosphate deposited on a Ti-6Al-4V surface and remelted using a Nd:YAG laser at varying laser power densities (25-50 W/mm(2)) have been studied and the results are presented. The electrochemical propertie...
متن کاملA survey of surface treatments to improve the fretting fatigue resistance of Ti-6Al-4V
The effects of surface modification treatments such as shot peening, ion implantation (carbon and nitrogen), surface lubrication (soft coating), laser gas nitriding and various combinations thereof, on the fretting fatigue resistance of Ti-6Al-4V have been investigated. The best of these surface treatments appears to be shot peening. While ion implantation improves the base metal fretting fatig...
متن کاملEffect of Laser Spot Welding Variables on Microstructure and Mechanical Properties of the Ti-6AL-4V to AISI304 Dissimilar Joint
In this project, joining Ti-6Al-4V and AISI 304 dissimilar plates by laser-spot-welding method has been studied. In this regard, Ti-6Al-4V and AISI 304 plates, with a thickness of 0.7 and 0.5 respectively, were lap-welded using an interlayer of 0.2 & 0.3 mm copper and silver (pure silver). The process was done by 400Watt pulsed laser (Nd:YAG) using oncentric spot welding with 4mm diameter circl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical materials
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2014